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ABSTRACT - The general idea of classification-based outlier detection method is to train a classification 

model that can distinguish normal data from outliers.  In the previous work, we have implemented and 

evaluated three classification based outlier detection algorithms and found that the k -neighborhood algorithm 

was capable of identifying and classifying the outliers better than the other two compared algorithm in terms of 

accuracy, f-score, Sensitivity/Recall, error rate. Further, the cpu time of the k-neighborhood algorithm also 

minimum.  In this work, the performance of outlier detection is evaluated using dimensionality reduction 

algorithms. The results clearly shows that the impact of dimensionality reduction algorithm on the cancer 

dataset is significantly improved the overall classification performance to a considerable level.  

 
1. INTRODUCTION 

 

In Data Mining, Outliers are meaningful input signals, which represent the characteristic of the 

object. This work aims to study the performance of classification algorithms of data mining for 

outlier detection using dimensionality reductions. Before the elimination of points, one should study 

why these points appeared and whether it is likely to continue to appear. 

1.1. Outlier Detection in High-Dimensional Data 

In high dimensional data set, some attributes may be irrelevant. But by using feature selection 

approaches such as filler and wrapper, has to find the subset of the original attributes. 

1.2. Problem Specification 

The identification of outlier can be viewed as classification problem which can lead to the 

discovery of unexpected knowledge in the medical field. The general idea is to train a classification 

model that can distinguish normal data from outliers [7]. 

In medical cancer dataset, the available number of malignant/outlier samples are less than that of 

the normal/benign and it causes an inaccurate classifier model [25, 26]. Many solutions like 

eliminate variables using factor analysis and principle component methods were suggested to 

improve the efficiency of the algorithm.  

This method proposes to use dimensionality reduction and feature selection algorithms to 

overcome the training performance and testing accuracy issues in the classification based outlier 

detection approaches. 

 
2. MODELING CLASSIFICATION BASED OUTLIER DETECTION SYSTEM 

 
The popular methods of outlier detection are supervised, semi supervised, unsupervised 

proximity-based. With the limitation of the Grubb’s test and the Rosener test, there is a need for 
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more sophisticated and speedy method such as classification based outlier detection, which heavily 

depends of the quality and availability of training data set. 

2.1. The Used Classification Algorithm 

 K-Nearest Neighbors Classifier 

 K-Nearest Neighbors is a method to assign the input instance to the class with the majority of K- 

Nearest Neighbors by considering the Euclidean distances between two instances 

2.2. Feature Selection Technique 

1. Chi Square, 2.Information Gain and 3.Gini Index are used. 

2.3. Dimensionality Reduction Algorithm 

The famous Algorithms for dimensionality reduction such as Principal Component Analysis, 

Kernel PCA and LPP (Locality preserving Projection) can be used. 

 

3. THE EVALUATION 
 

The performance of the classification algorithms under evaluation were tested with "Wisconsin 

Breast Cancer Database" 

3.1. Breast cancer dataset 

Breast cancer dataset (Wisconsin Breast Cancer Database) obtained from the UCI online 

machine-learning repository at http://www.ics.uci.edu/~mlearn/MLRepository.html  

The Wisconsin breast cancer database (WBCD): The WBCD dataset is summarized in Table 1 

and consists of 699 instances taken from fine needle aspirates (FNA) of human breast tissue. Each 

instance consists of nine measurements (without considering the sample's code number), namely 

clump thickness, uniformity of cell size, uniformity of cell shape, marginal adhesion, single 

epithelial cell size, bare nuclei, bland chromatin, normal nucleoli, and mitoses. The measurements 

are assigned an integer value between 1 and 10, with 1 being the closest to benign and 10 the most 

anaplastic. Associated with each sample is its class label, which is either benign or malignant. This 

dataset contains 16 instances with missing attributes' values. Since many classification algorithms 

have discarded these data samples, for the ease of comparison, the same way is followed and the 

remaining 683 samples are taken for use. Therefore, the class is distributed with 444 (65.0%) benign 

samples and 239 (35.0%) malignant samples (Tan et al 2003). 

3.2. Metrics Used For Evaluation 

Random index and Run time are two measures for evaluating the algorithm under consideration. 

The total run time is the sum of the times taken for learning and testing and this model concentrate 

on the time taken for training which is higher than the time taken for testing.  

3.2.1. Total Run Time 

We calculated the total run time as the sum of time required for training and the time required for 

testing. Here we compare the CPU times only. Since the time taken for training is the very much 

higher and the time required for testing the network with same number of records is very in 

significant, in the following table we just only mention the time taken for training. 
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Table 1: Summary of the WBCD dataset 

Attribute  Possible values 

Clump thickness Integer 1–10 

Uniformity of cell 

size 
Integer 1–10 

Uniformity of cell 

shape 
Integer 1–10 

Marginal adhesion Integer 1–10 

Single epithelial cell 

size 
Integer 1–10 

Bare nuclei Integer 1–10 

Bland chromatin Integer 1–10 

Normal nucleoli Integer 1–10 

Mitoses Integer 1–10 

Class Benign (65.5%),  

Malignant (34.5%) 

3.3. The Metrics and Validation Method Used for Performance Evaluation 

3.3.1. Confusion Matrix 

A Confusion matrix shows the type of classification error a classifier produced. The advantage of 

using this matrix is that it not only tells us how many got misclassified but also what 

misclassifications occurred. 

 

Predicted Class  

Positiv

es 

Negative

s 

Actual 

Class 

a b Positives 

c d Negative

s 

Figure 1: A confusion matrix. 

 

The breakdown of a confusion matrix is as follows: 

 a is the number of positive examples correctly classified (True Positives –TP)  

 b is the number of positive examples misclassified as negative(False Negatives -FN) 

 c is the number of negative examples misclassified as positive(False Positives –FP) 

 d is the number of negative examples correctly classified(True Negatives –TN). 

The performance of the algorithm is measured with metrics Sensitivity, Specificity, Accuracy , 

Precision ,F-score , Error rate and CPU time. 

Sensitivity = TP/ (TP +FN) 

Specificity = TN/ (TN +FP) 

Error Rate = (T – C) / T, The test data has total of T objects and C of the T objects are correctly 

classified. 
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3.3.2. Validation Methods 

This work uses the K-fold cross validation method, in which the data set is divided into K- 

disjoint subsets of approximately equal size. One of the subsets is then used as the test set and the 

remaining k-1 sets are used for building the classifier. The test set is then used to estimate the 

accuracy.  This is done repeatedly k times so that each subset is used as a test subset once. One of the 

K-subset is used as a test set and remain K-1 subsets are put together to form a training set. Thus 

every data point gets a chance to be in a test set exactly once. 

In the first iteration , to obtain the first model, subset  x1,x2,…,xk, collectively serve as a training 

set , which is tested on x1 :  the second iteration is trained in subsets x1,x3,…,xk  and tested on x2:   and 

so on. 

About the Implementation 

The proposed outlier detection software is developed with Matlab version 7.4.0 (R2007a) and 

uses some of the features of Weaka with Matlab interface code. The Mex and Java interface of 

matlab is used to implement this outlier detection software.  Here, the standard weaka 

implementation of the classification algorithms is used and only passed the default parameters while 

invoking the classifier algorithms. 
 

4. RESULTS AND DISCUSSION 
 

In the second plot clearly shows that the benign records are grouped together and form a distinct 

cluster. The red points that are deviating from the black cluster are the outliers which signifies the 

malignant nature of that case.  

 
Figure 2: The Plot of WBDC Data Clearly Showing the Benign Cluster and Malignant Outliers 

 

  The following table lists the performance of the algorithm with respect to different metrics. In fact, 

each value is an average of 10 trials. In each trial we did a 10- fold validation. So, each table cell 

value is the average of 100 separate runs with different training and testing data sets. 

With the concept of the number dimension as five, first five features, the above table shows an 

improvement in the performance of outlier detection with different number of dimensionality 

reduction algorithms. 

4.1. The Effect of Feature Selection Algorithms 

  This table reveals that there is no improvement in accuracy or reduction in error rate. So it is clear 

that there is no performance improvement in result by considering less number of features than 

original one.      
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Table 2: The Performance of Outlier Detection  with different Feature Dimensionality Reduction Algorithms and 

Classification Algorithms 

 

Algorithm 

Precisio

n  

% 

F-Score 

% 

Sensitivity 

% 

Specificit

y % 

Accuracy 

 % 

Error Rate 

% 

k-Neighbourhood  96.07 96.66 97.31 92.23 95.57 4.43 

Chi-square + k-

Neighbourhood 
   96.44 95.75 95.20 93.34 94.56 5.44 

Information Gain + k-

Neighbourhood 
   96.49 96.16 95.94 93.27 95.00 5.00 

Gini Index + k-

Neighbourhood  
96.02 96.55 97.16 92.28 95.47 4.53 

 

PCA + k-

Neighbourhood 
96.65 96.83 97.07 93.69 95.85 4.15 

kPCA + k-

Neighbourhood 
95.25 94.38 93.66 91.08 92.75 7.25 

LPP + k-

Neighbourhood  
96.89 97.20 97.57 94.23 96.37 3.63 

 

The following table shows the comparison of previous results with this work. 

 
Table 3: The Comparison with Recent Works 

Sl No Classifiers 
Classification 

accuracy 

1 
CART with feature selection 

(Chi- square)[11] 
94.56% 

2 C4.5 [12] 94.74% 

3 Hybrid Approach[14] 95.96% 

4 Neuron-Fuzzy[16] 95.06% 

5 
Supervised Fuzzy Clustering 

[17] 
95.57% 

6 
Proposed  PCA* + k-

Neighborhood 
95.85 

* The First Five Principal Components  were used for classification 

 

 

4.2. The Effect of Dimensionality Reduction Algorithms 
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In this case, accuracy measures the capability of the algorithms to correctly identify the normal as 

well as outliers in the data. It means, Proposed PCA+ k-neighborhood and proposed LPP+ k-

neighborhood classifiers are capable of marking normal as well as the outliers correctly.  

This table shows the performance of the algorithm in terms of f-score. In this case, f-score measures 

the capability of the algorithms to correctly identify the normal as well as outliers in the data. As 

shown in the table, with respect to f-score, proposed PCA+ k-neighborhood and proposed LPP+ k-

neighborhood classifiers performed well.  

In this case, error rate measures how much the algorithm wrongly identifies both the normal as well 

as outliers in the data. The lower value of error rate of proposed PCA+ k-neighborhood and proposed 

LPP+ k-neighborhood classifiers reveals that classifiers are making less error while identifying the 

malignant as well as outlier data. 

 

5. CONCLUSION 

This work is implemented with the classification based outlier detection software under Matlab and 

evaluated its performance using different metrics and thus arrived at significant and comparable 

results. The table and graphs in the previous section shows the overall results. In this work, the 

performance of outlier detection algorithm K-Neighborhood with dimensionality reduction 

algorithms is evaluated and the result clearly shows that the impact of dimensionality reduction 

algorithm on the cancer dataset improves the overall classification performance. Also it is clear that 

there is no significant effect on the result by using the feature selection algorithms. Future works 

may address these issues and improve the performance of the outlier detection in cancer data with 

other algorithms. 
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